NAG Fortran Library Routine Document F02FDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F02FDF computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric-definite generalized eigenproblem.

2 Specification

```
SUBROUTINE F02FDF (ITYPE, JOB, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK,

IFAIL)

INTEGER

double precision

CHARACTER*1

JOB, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK,

IFAIL

A(LDA,*), B(LDB,*), W(*), WORK(LWORK)
```

3 Description

F02FDF computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric-definite generalized eigenproblem of one of the following types:

- 1. $Az = \lambda Bz$
- 2. $ABz = \lambda z$
- 3. $BAz = \lambda z$

Here A and B are symmetric, and B must be positive-definite.

The method involves implicitly inverting B; hence if B is ill-conditioned with respect to inversion, the results may be inaccurate (see Section 7).

Note that the matrix Z of eigenvectors is not orthogonal, but satisfies the following relationships for the three types of problem above:

- 1. $Z^{\mathrm{T}}BZ = I$
- $2. \quad Z^{\mathrm{T}}BZ = I$
- 3. $Z^{T}B^{-1}Z = I$

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

The problem is $Az = \lambda Bz$;

5 Parameters

1: ITYPE – INTEGER

On entry: indicates the type of problem.

ITYPE = 1

[NP3657/21] F02FDF.1

ITYPE = 2

The problem is $ABz = \lambda z$;

ITYPE = 3

The problem is $BAz = \lambda z$.

Constraint: ITYPE = 1, 2 or 3.

2: JOB – CHARACTER*1

Input

On entry: indicates whether eigenvectors are to be computed.

JOB = 'N'

Only eigenvalues are computed.

JOB = 'V'

Eigenvalues and eigenvectors are computed.

Constraint: JOB = 'N' or 'V'.

3: UPLO - CHARACTER*1

Input

On entry: indicates whether the upper or lower triangular parts of A and B are stored.

UPLO = 'U'

The upper triangular parts of A and B are stored.

UPLO = 'L'

The lower triangular parts of A and B are stored.

Constraint: UPLO = 'U' or 'L'.

4: N - INTEGER

Input

On entry: n, the order of the matrices A and B.

Constraint: $N \ge 0$.

5: A(LDA,*) - double precision array

Input/Output

Note: the second dimension of the array A must be at least max(1, N).

On entry: the n by n symmetric matrix A.

If UPLO = 'U', the upper triangle of A must be stored and the elements of the array below the diagonal need not be set.

If UPLO = 'L', the lower triangle of A must be stored and the elements of the array above the diagonal need not be set.

On exit: if JOB = 'V', A contains the matrix Z of eigenvectors, with the *i*th column holding the eigenvector z_i associated with the eigenvalue λ_i (stored in W(i)).

If UPLO = 'U', the upper triangular part of A is overwritten.

If UPLO = 'L', the lower triangular part of A if overwritten.

6: LDA – INTEGER

Input

On entry: the first dimension of the array A as declared in the (sub)program from which F02FDF is called.

Constraint: LDA $\geq \max(1, N)$.

F02FDF.2 [NP3657/21]

7: B(LDB,*) – *double precision* array

Input/Output

Note: the second dimension of the array B must be at least max(1, N).

On entry: the n by n symmetric positive-definite matrix B.

If UPLO = 'U', the upper triangle of B must be stored and the elements of the array below the diagonal are not referenced.

If UPLO = 'L', the lower triangle of B must be stored and the elements of the array above the diagonal are not referenced.

On exit: the upper or lower triangle of B (as specified by UPLO) is overwritten by the triangular factor U or L from the Cholesky factorization of B as $U^{T}U$ or LL^{T} .

8: LDB – INTEGER

Input

On entry: the first dimension of the array B as declared in the (sub)program from which F02FDF is called.

Constraint: LDB $\geq \max(1, N)$.

9: W(*) – *double precision* array

Output

Note: the dimension of the array W must be at least max(1, N).

On exit: the eigenvalues in ascending order.

10: WORK(LWORK) – *double precision* array

Workspace

11: LWORK – INTEGER

Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F02FDF is called. On some high-performance computers, increasing the dimension of WORK will enable the routine to run faster; a value of $64 \times N$ should allow near-optimal performance on almost all machines.

Constraint: LWORK $\geq \max(1, 3 \times N)$.

12: IFAIL – INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. If you are unfamiliar with this parameter you should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

```
On entry, ITYPE \neq 1, 2 or 3, or JOB \neq 'N' or 'V', or UPLO \neq 'U' or 'L', or N < 0, or LDA < max(1, N),
```

[NP3657/21] F02FDF.3

or
$$LDB < max(1, N)$$
, or $LWORK < max(1, 3 \times N)$.

IFAIL = 2

The QR algorithm failed to compute all the eigenvalues.

IFAIL = 3

The matrix B is not positive-definite.

7 Accuracy

If λ_i is an exact eigenvalue, and $\tilde{\lambda}_i$ is the corresponding computed value, then

for problems of the form $Az = \lambda Bz$,

$$\left|\tilde{\lambda}_i - \lambda_i\right| \le c(n)\epsilon \|A\|_2 \|B^{-1}\|_2;$$

for problems of the form $ABz = \lambda z$ or $BAz = \lambda z$,

$$\left|\tilde{\lambda}_i - \lambda_i\right| \le c(n)\epsilon \|A\|_2 \|B\|_2.$$

Here c(n) is a modestly increasing function of n, and ϵ is the machine precision.

If z_i is the corresponding exact eigenvector, and \tilde{z}_i is the corresponding computed eigenvector, then the angle $\theta(\tilde{z}_i, z_i)$ between them is bounded as follows:

for problems of the form $Az = \lambda Bz$,

$$\theta(\tilde{z}_i, z_i) \leq \frac{c(n)\epsilon \|A\|_2 \|B^{-1}\|_2 (\kappa_2(B))^{1/2}}{\min_{i \neq i} |\lambda_i - \lambda_j|};$$

for problems of the form $ABz = \lambda z$ or $BAz = \lambda z$,

$$\theta(\tilde{z}_i, z_i) \leq \frac{c(n)\epsilon ||A||_2 ||B||_2 (\kappa_2(B))^{1/2}}{\min\limits_{i \neq j} |\lambda_i - \lambda_j|}.$$

Here $\kappa_2(B)$ is the condition number of B with respect to inversion defined by: $\kappa_2(B) = ||B|| \cdot ||B^{-1}||$. Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues, and also on the condition of B.

8 Further Comments

F02FDF calls routines from LAPACK in Chapter F08. It first reduces the problem to an equivalent standard eigenproblem $Cy = \lambda y$. It then reduces C to tridiagonal form T, using an orthogonal similarity transformation: $C = QTQ^T$. To compute eigenvalues only, the routine uses a root-free variant of the symmetric tridiagonal QR algorithm to reduce T to a diagonal matrix Λ . If eigenvectors are required, the routine first forms the orthogonal matrix Q that was used in the reduction to tridiagonal form; it then uses the symmetric tridiagonal QR algorithm to reduce T to Λ , using a further orthogonal transformation: $T = S\Lambda S^T$; and at the same time accumulates the matrix Y = QS, which is the matrix of eigenvectors of C. Finally it transforms the eigenvectors of C back to those of the original generalized problem.

Each eigenvector z is normalized so that:

for problems of the form $Az = \lambda Bz$ or $ABz = \lambda z$, $z^{T}Bz = 1$;

for problems of the form $BAz = \lambda z$, $z^{T}B^{-1}z = 1$.

The time taken by the routine is approximately proportional to n^3 .

F02FDF.4 [NP3657/21]

9 Example

To compute all the eigenvalues and eigenvectors of the problem $Az = \lambda Bz$, where

$$A = \begin{pmatrix} 0.24 & 0.39 & 0.42 & -0.16 \\ 0.39 & -0.11 & 0.79 & 0.63 \\ 0.42 & 0.79 & -0.25 & 0.48 \\ -0.16 & 0.63 & 0.48 & -0.03 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 4.16 & -3.12 & 0.56 & -0.10 \\ -3.12 & 5.03 & -0.83 & 1.09 \\ 0.56 & -0.83 & 0.76 & 0.34 \\ -0.10 & 1.09 & 0.34 & 1.18 \end{pmatrix}$$

9.1 Program Text

```
FO2FDF Example Program Text
     Mark 16 Release. NAG Copyright 1992.
      .. Parameters ..
      INTEGER
                      NIN, NOUT
     PARAMETER
                       (NIN=5, NOUT=6)
      INTEGER
                      NMAX, LDA, LDB, LWORK
      PARAMETER
                       (NMAX=8,LDA=NMAX,LDB=NMAX,LWORK=64*NMAX)
      .. Local Scalars ..
      INTEGER I, IFAIL, ITYPE, J, N
     CHARACTER
                      UPLO
      .. Local Arrays ..
      DOUBLE PRECISION A(LDA, NMAX), B(LDB, NMAX), W(NMAX), WORK(LWORK)
      .. External Subroutines ..
     EXTERNAL
                      FO2FDF, XO4CAF
      .. Executable Statements ..
      WRITE (NOUT,*) 'F02FDF Example Program Results'
     Skip heading in data file
     READ (NIN, *)
     READ (NIN,*) N
      IF (N.LE.NMAX) THEN
         Read A and B from data file
         READ (NIN, *) UPLO
         IF (UPLO.EQ.'U') THEN
            READ (NIN,*) ((A(I,J),J=I,N),I=1,N)
            READ (NIN, *) ((B(I,J), J=I,N), I=1,N)
         ELSE IF (UPLO.EQ.'L') THEN
            READ (NIN,*) ((A(I,J),J=1,I),I=1,N)
            READ (NIN,*) ((B(I,J),J=1,I),I=1,N)
         Compute eigenvalues and eigenvectors
         ITYPE = 1
         IFAIL = 0
         CALL F02FDF(ITYPE, 'Vectors', UPLO, N, A, LDA, B, LDB, W, WORK, LWORK,
                     IFAIL)
        WRITE (NOUT, *)
        WRITE (NOUT,*) 'Eigenvalues'
         WRITE (NOUT, 99999) (W(I), I=1, N)
         WRITE (NOUT, *)
         CALL X04CAF('General',' ',N,N,A,LDA,'Eigenvectors',IFAIL)
     END IF
      STOP
99999 FORMAT (3X, (8F11.4))
     END
```

[NP3657/21] F02FDF.5

9.2 Program Data

F02FDF	Example	Progra	m Data	
4				:Value of N
'L'				:Value of UPLO
0.24				
0.39	-0.11			
0.42	0.79	-0.25		
-0.16	0.63	0.48	-0.03	:End of matrix A
4.16				
-3.12	5.03			
0.56	-0.83	0.76		
-0.10	1.09	0.34	1.18	:End of matrix B

9.3 Program Results

FO2FDF Example Program Results

Eige	envalues -2.2254	-0.4548	0.1001	1.1270			
Eigenvectors							
	1	2	3	4			
1	-0.0690	-0.3080	0.4469	0.5528			
2	-0.5740	-0.5329	0.0371	0.6766			
3	-1.5428	0.3496	-0.0505	0.9276			
4	1.4004	0.6211	-0.4743	-0.2510			

F02FDF.6 (last) [NP3657/21]